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Chapter 1

Executive Summary

1.1 Introduction

The nature of intelligence has been a long-standing mystery for scientific
research. Until it will be solved, machine intelligence remains undefined,
some may say meaningless. Thus, we are forced to come up with a hypothesis
about intelligence to enable us to talk about the integration of human and
machine intelligences subject to the constraint/context of our hypothesis.

In our view, intelligence is mastering to deal with and to resolve a special
class of combinatorial problems; those which are hard to solve but are easy
to verify [Lőrincz, 2004]. An important assumption of this definition is the
existence of ‘components’, the parts that information is made of. Combi-
natorics then concerns components of the available information in two ways
(i) the combination of components into new ones and (ii) the deciphering of
combined components.

Now we can phrase what we mean by the task of fusing intelligences:

Point 1 Independent searches for components

Point 2 Decision – in agreement with other agents – about the symbols
(e.g., the words) that represent the components

Point 3 Jointly accepted methods of recognition by means of the agreed
components

Point 4 The list of known combinations of components, inferences by
means of components, inferences about the appearance of novel com-
ponents or the appearance of novel combinations of components

1.2 Solution

Our project AFRL IRI FA8655-03-1-3036 is concerned with Point 2
above, with two agents; the human user and the machine. An interaction
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scheme was designed. The scheme required particular items that we had to
develop and study, including special learning schemes for internet crawlers
[Palotai et al., 2006b], synonym generation and synonym based explanation
system [Gábor et al., 2005], map based internet navigation and map based
explanation. We have found intriguing results concerning learning in scale-
free small worlds (SFSW) [Palotai et al., 2005a, Palotai et al., 2006a]. SF-
SWs are very important, because they seem to form in every evolutionary
system, including – among others – the Internet and the language.

During our developments we have found that one of the most serious
bottlenecks of the research is the verification (evaluation) of the methods.
At start, we intended to rely on human experts. However, this idea had
to be rejected, because we were unable to design an objective measure for
judging the human expert and his/her activities when interacting with the
machine. After all, the project concerns an algorithm, which is supposed to
pass the Turing test [Lőrincz and Szirtes, 2003] in the long run, but there is
no general performance measure for this test.

During the project, we conducted several experiments to solve these
problems. We have tried:

1. crawler competition over the Internet,

2. crawler competition on a downloaded and modifiable portion of the
Internet,

3. crawler communication in a downloaded and modifiable portion of the
Internet,

4. human competition aided by machine intelligence, and

5. student examination to test overview of course material.

Eventually have figured out a method to fuse intelligences. In essence,
the solution has intermingled steps: (i) an unknown topic is created by
means of a decision surface in document space and humans try to find the
components of the topic: they try to identify the topic by creating word
maps. Performance of the word maps is judged by Internet crawlers that
crawl with the word maps, namely, according to the precision and the recall
rates of the crawlers. These numbers are computed for the downloaded
documents by means of the decision surface. Humans are credited according
to the quality of their crawler. This is our solution for Point 2 if it is under
human supervision.

The solution has promises for Points 1 and Point 3, too: strategies
used by humans were identified by interviewing them. These are ingenious
algorithms that can be applied separately or in combination. The loop can
be closed if the crawlers use these human strategies. Then, in the future,
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crawlers themselves may search for novel components and the word map
based identification of the topic will become a joint effort.

This route does not offer a straightforward solution for Point 4 and
this point remains open. We believe that belief networks may be able to
tackle this last point. The advance of fast belief propagation algorithms
[Hinton et al., 2006], the highly clustered nature of SFSWs, and existence
of fast and local distributed clustering algorithms in SFSWs (see, e.g.,
[Lőrincz et al., 2004b] and references therein) have the promise of fast ma-
chine inferencing in human-computer collaboration.

Our results, which are detailed in this Final Report, show the promise
of the approach.
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Part I

Overview of Research and
Achievements
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Chapter 2

Motivation

2.1 What can we learn from psychology?

Here, we shall review two theories on human cognition. On the basis of
certain psychophysical experimental data, Biederman suggests that recog-
nition occurs by the recognition of the components [Biederman, 1987]. This
opinion will be called factorial theory. A typical example is the recognition
of faces by means of the components, e.g., eyes, nose, mouth and their rela-
tive arrangements. The promise of this theory is that it can be generalized
to spatio-temporal patterns. Then, the recognition by components and pat-
tern completion may also concern (i) prediction of future events and/or (ii)
filling in missing past events.

The other theory claims that cognition is categorization (see, e.g.,
[Harnad, 2003] and references therein). Categorization here means the form-
ing of decision surfaces between different sample sets. Under this condition,
the components of the decision can not be established, learning is hard
earned, it proceeds by trial-and-error and the result of learning is not acces-
sible to introspection. Upon learning, discrimination capabilities typically
change; discrimination is enhanced between categories and decreases within
the categories. The phenomenon is called categorical perception. This view
will be referred to as categorization theory. A typical example is the naming
of a color.

Both theories are necessary for recognition: we need to recognize the
components in order to recognize the whole by means of the components.
This ‘procedure’ is an infinite regress, unless at some point hard earned
categories help us. For example, the color of the face or certain components
of the mouth, etc., may not have components and their recognition may rely
on categorical perception.
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2.2 How can we translate these ideas to commu-
nication and intelligence?

Communication is about passing information. The passed information
then – when used – undergoes verification. First, for the sake of clarity, let us
consider evolution. During evolution, information is passed from individuals
to individuals by means of the genes, which are the compressed forms of
‘success stories’ (=: the fittest survive and can multiply). Then, the new
generation unfolds these success stories and ‘verifies’ them. If verification
is successful, then the compressed information can be passed to the next
generation. In the case of evolution, propagation of information concerns
propagation through time.

This situation changes for communication between agents. Now, infor-
mation transfer occurs in space, too. There are new features in this case,
information transfer gains novel dimensions. Transferred information may
be about the solution of a given problem or it may be about an observation
that decreases limitations of observation of individual agents and helps pat-
tern completion and pattern recognition in various circumstances. In both
cases, the new information – if used then it – undergoes verification.

Intriguingly, verification can be related to the theory of computation.
From the point of view of communication, there are two basic types of com-
putational tasks determined by the polynomial, non-polynomial but polyno-
mially verifiable (PV) and non-PV classification of computational problems.

We say that a problem is polynomial (it is easy to solve), if it can be
solved in polynomial time. On the other hand, a problem is PV (it is easy to
verify), if it has solution instances that can be verified in polynomial time.
Non-PV problems have instances, which can not be verified in polynomial
time (they are hard to verify).

In turn, from the point of view of communication, we have two groups:
The first group can be called as not worth to communicate type; non-WTC
type . This type is either easy to solve and easy to verify, or hard to solve
and hard to verify. The other type is hard to solve but easy to verify and,
in turn, it is of WTC type: It is worth to communicate the solution. For
non-WTC type problems communication is simply an overhead, it requires
computational power and no gains can be expected by communication. On
the other hand, WTC type problems – according to theory of computa-
tion – may have exponential gains if communication and then verification
is possible. As an example, consider the Travelling Salesman problem. The
complexity of the problem scales very quickly with the number of cities,
but the complexity of verification scales linearly, we just have to ‘follow’ the
solution to verify it.
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Chapter 3

Solution

For systems dealing with the semantic content of documents, the short
summary of the content, or the context of any document is of critical impor-
tance. Comparing documents by content, finding out which documents are
relevant for a user can be performed by highlighting important fractions of
the document. There are trivial ways to do this and such methods have been
included into MS Word since at least 1997. Such simple methods search for
frequent words and select parts at the sentence level. This particular method
of document compression is not particularly useful if the content and/or the
context of the document are unclear for us.

Figure 3.1: Human association network
The associative network was created by providing cue words, collecting re-
sponse words and compressing the network. This network was published in
the technical report of [Steyvers and Tenenbaum, 2005].

Another straightforward way to summarize the content of a document
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is to extract phrases that have a key role in determining the meaning of
a document. There have been promising attempts for automatically ex-
tracting keyphrases from documents [Turney, 1999, Frank et al., 1999]. A
simple, possibly ordered list of keyphrases conveys many information for
human readers. Humans are very good at augmenting bits and pieces of
information with background knowledge, like finding out the connections
between keyphrases, which greatly helps them in guessing the meaning of
a document provided the list of keyphrases. However, this method may be
insufficient for an automated system or also for us in crucial cases. Some
kind of interaction with the computer may be necessary. For example, when
searching for documents in Google, the search engine makes suggestions,
whether we would like (i) to sharpen the search by particular logical con-
structs between keywords or (ii) to find ‘similar documents’. In many cases,
these options still do not warrant the proper cognitive embedding, i.e., the
search engine makes no effort to match our ‘thinking’.

Figure 3.2: Step-by-step collection of human association network
[Steyvers and Tenenbaum, 2005]
The associative network was created by providing cue words and collecting
response words. The network shows different contexts and switching (routes)
between those contexts.

In our approach, we rely on maps. This is due to the following:

Human thinking: We are good in associations and associations are map
like structures (see, Fig. 3.1 and also Fig. 3.2).

Scale free small worlds: Maps are particularly useful for scale-free small
worlds (SFSW), because SFSW structure supports hierarchical clus-
tering.

Natural language: The word associations graph of human languages
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exhibits the SFSW property, too [Ferrer i Cancho and Sole, 2001,
Steyvers and Tenenbaum, 2005]. This underlines the importance of
graphs.

The interaction with the human user is depicted in Fig. 3.3

USER
CRAWLER
SERVICE

KEYPHRASE
MAP SERVICE

REINFORCEMENT
SERVICE

docmap

map of simdocs

wordmap

K-map

RL-docmap

Q-docmap

Q-wordmap

map of simdocs

Figure 3.3: Planned user-computer interaction framework
Planned framework makes use of keywords and keyword maps. Such maps
can be provided and modified by the user, and are also extracted, computed,
and compared by the computer for any given document. For more details
of the architecture, see our Second Report. Notations: Q ⇒ quality, it is
achieved after user interaction, K ⇒ keyword, RL⇒ reinforcement learning,
‘sim’: similar

3.1 Fusing intelligences: Algorithms

We have developed and implemented algorithms as required by Fig. 3.3.
Central pieces of the algorithms are as follows:

1. Distributed bottom-up clustering algorithm that serves to partition
large graphs [Lőrincz et al., 2004b].

2. User identification and link highlighting algorithm that assist Internet
searches on-line [Palotai et al., 2005b].
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3. Selective Weblog algorithm that efficiently partitions scale-free small
worlds [Palotai et al., 2006b].

4. Neural network algorithm that can be used for synonym queries. It
features pattern completion and can be adapted to the actual topics
or database [Gábor et al., 2005].

3.2 Fusing intelligences: Preliminary experiments

We have designed and applied different preliminary experiments before
deciding how to combine algorithmic components and how to evaluate the
performance of the tool.

Crawler Competition over the Internet: We populated a huge scale-
free portion of Internet environment with news foragers. They evolved
by a simple internal selective algorithm: selection concerned the mem-
ory components, being finite in size and containing the list of most
promising supplies. Foragers received reward for locating not yet found
news and crawled by using value estimation. Foragers were allowed to
multiply if they passed a given productivity threshold. A particular
property of this community is that there is no direct interaction (here,
communication) amongst foragers that allowed us to study compart-
mentalization, assumed to be important for scalability, in a very clear
form. Experiments were conducted with our novel scalable A-life ar-
chitecture. These experiments had two particular features. The first
feature concerned the environment: a scale-free world was studied as
the space of evolutionary algorithms. The choice of this environment
was due to its generality in mother nature. The other feature of the
experiments concerned the fitness. Fitness was not predetermined by
us, but it was implicitly determined by the unknown, unpredictable
environment that sustained the community and by the evolution of the
competitive individuals. We found that the A-life community achieved
fast compartmentalization [Palotai et al., 2006b].

Crawler Competition on a downloaded portion of the Internet:
The ’No Free Lunch Theorem’ claims that for the set of all prob-
lems no algorithm is better than random search. Thus, selection can
be advantageous only on a limited set of problems. We investigated
how the topological structure of the environment influences algorith-
mic efficiency. We have studied random, scale-free, and scale-free small
world (SFSW) topologies. Selective learning, reinforcement learning
and their combinations were tried. We found that selective learn-
ing is the best in SFSW topology. In non-small world topologies,
however, selection looses against the combined algorithm. Learning
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agents were web-crawlers searching for novel, not-yet-found informa-
tion. Experiments were run on a large news site and on its downloaded
portion. Controlled experiments were performed on this downloaded
portion: we modified the topology, but kept the occurrence times of
the news. Our findings may have implications for the theory of evolu-
tion [Palotai et al., 2005a, Palotai et al., 2006a].

Crawler Communication in a downloaded portion of the Internet:
We studied the influence of the topology of the environment on the
communication efficiency of crawlers in quest of novel information in
different topics on the Internet. They employed a selection based
‘Weblog’ algorithm, a function approximation based reinforcement
learning (RL) algorithm, or their combination. Real data were col-
lected from the Web and scale-free worlds, scale-free small world
(SFSW), and random environments were created by reorganizing the
links. The Weblog algorithm, in effect, modified the starting URL lists
of the crawlers, whilst RL altered the URL orderings. The following
predictions were tested: (i) if the communication parameters have to
be learned, then the effect of communication is negligible, (ii) whereas
if they are aptly fixed, then the communication plays a major role
in the system. We demonstrated that in the SFSW environment, the
number of relevant documents that had been found was approximately
the same regardless of whether the crawlers learned the parameters or
whether the parameters were fixed in an appropriate manner. Should
the crawlers have learned the parameters of their own topics and trans-
mitted them to the other crawlers, then the number of relevant doc-
uments communicated by the RL crawlers was significant. In case of
properly fixed parameters the reinforcement learning and the Weblog
update algorithm assisted each other independently of the type of the
environment. The age of a document depended considerably upon the
type of the environment provided that the parameters were fixed suit-
ably. The freshness of a document, i.e., whether it was new or not,
however, did not depend on the environment [Lázár et al., 2006].

Human Competition aided by machine intelligence: We had down-
loaded a large portion of the Internet and stored it locally. We have
provided an intermixed set of good and false keywords for some par-
ticular valuable documents of the downloaded portion of the Internet
database. The database, in effect had hidden these valuable docu-
ments. The task was to find the documents by means of crawling over
the downloaded part of the Internet, using keyphrase extraction, cre-
ating keyphrase maps, using these maps for crawling, making queries
for Google Desktop by means of the keywords, improving the set of
keywords and the keyword maps. The hint that we provided to help
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searches was a similarity measure between the actual document and
the set of valuable documents. This measure was computed automat-
ically if it was requested by the user. The similarity comparisons were
made by means of the keyword maps. The user who found the largest
number of valuable documents was announced as the winner of the
competition. Asking about the experiences of the users, we found
that keyword maps are better if words are arranged in sets: the sets
can be connected by ’OR‘ logical operation and then the words within
sets should be connected by ‘AND’ operation. In this description con-
texts are poorly defined, but visualization is eased. The extension to
context maps is, however, desirable.

Student examination to test overview of course material: The
same method was used as the entrance exam for University students.
The task was to identify the good portion of the keywords and to find
documents related to those sets. Sets were selected carefully, they re-
quired the knowledge from more than one chapter of the material of
the course. Based on the exams, we have concluded the following:

1. Indeed, this examination is good to gain an overall picture about
the understanding of the material, the missing parts, and it is
superior to subjective evaluations.

2. Such evaluations need special permission procedures, because one
could design quests that uncover emotional and cognitive ‘para-
meters’ of the user.

3.3 Fusing intelligences: The experiment

Several preliminary tests were run in order to debug the system and to
add functionalities suggested by the users. In order to have a measure for the
success of the search, we have designed a reinforcing agent. The agent was
made of a decision surface, a support vector machine (SVM) that was trained
on PDF files with a few positive and a large number of negative examples.
The positive examples defined the ‘search topics’ and if the output of the
SVM was 1 (-1) then positive (zero) reinforcement was given to the human
user.

The human user could create keyword maps for crawlers and the crawlers
crawled the web for documents. The crawl was adapted according to the
success defined by the keyword maps: if the keyword map of the document
was similar to that of the crawler then the crawler was reinforced and the
crawling parameters (but not the keyword map) were changed accordingly
[Palotai et al., 2006b]. In effect, the human user was successful if it trans-
lated its introspection into keyword maps made of components in a way that
crawlers became successful for finding documents over the Internet.
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That is, the hidden category defined by the decision surface was bro-
ken into components by the human user, who optimized the efficiency of
the Internet robot and improved the component description of the subject.
In other words, the implicit knowledge hidden by the decision surface was
approximately identified by human understandable word clusters in an in-
teraction between the human user and the fleet of Internet crawlers.

Two search topics were used, they are detailed in the rest of this report.
An illustration of the results follows below.

13



Chapter 4

Results and Discussion

The interaction between human and computer was very efficient:

• Humans found a large portion of the documents that were used as
positive examples in the SVM procedure to create a decision surface.

• Humans found many other documents that passed the SVM classifi-
cation.

• Evaluations based on the keyword maps over a portion of the positive
examples and a 5 times larger set of data (i) form the neighborhood
of these positive examples and (ii) on similar topics, showed that the
maps could discriminate between the documents with high confidence.

• Special components of the keyword maps provided extra information
about the topics, because users could create disjunctive normal forms
for the description of the topics. In effect, they created disjunctions
of special conjunctive descriptions by means of the keywords that we
extracted for them. Many of the successful conjunctions need expla-
nations: it should be understood why and how the performance was
so good over the Internet and if this good performance is changing by
time or not. This is where novel knowledge can be created, the very
point of fusing intelligences.

Details on the precision of the keyword map based searches in terms of the
so called accuracy and recall values are provided in Section 5.5.

Here is an illustration. One of the two topics is ‘cortical neural prosthet-
ics’. A number of pdf documents (47) was downloaded from the site of the
NINDS (http:// www.ninds.nih.gov/ funding/ research/ npp/ index.htm)
from a larger set (about 310 documents) of documents on the more general
topic of neural prosthetics.

One of the keyword maps created by one of the users is shown in Fig. 4.1.
The clusters represent words in ‘AND’ relations. One might say that all

14



Figure 4.1: Keyword map for cortical neural prosthetics

of them but the cluster in the lower right corner is clearly related to im-
plants. The lower right cluster has the following words: cat electric stimula-
tion acoustic fibers compared shown strongest and versus that seem to have
little or no connection to cortical implants.

First, we excluded words shown strongest and versus. The we tried the
rest in Google and received the following hits:

• Comparison of auditory single fiber responses during acoustic and ...
Comparison of auditory single fiber responses during acoustic and elec-
tric stimulation of the intact cat cochlea. Hartmann R, Topp G, Klinke
R.MeSH

• Stochastic properties of cat auditory nerve responses to electric ...
Acoustic Stimulation methods Animals Auditory Perception physiol-
ogy Auditory Threshold physiology Cats Cochlear Nerve physiology
Electric Stimulation ...

• Comparison of auditory single fiber responses during acoustic and ...
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Comparison of Auditory Single Fiber Responses. During Acoustic and
Electric Stimulation. of the Intact Cat Cochlea... R. Hartmann, G.
Topp, and R. Klinke

• Auditory nerve fiber responses to electric stimulation: Modulated
... responded to acoustic stimulation or exhibited a multi-modal ...
responses of cat auditory nerve fibers to biphasic electrical current
pulses,. Ann. Otol.

These hits are clearly connected to the topics. We have deleted words one-
by-one, investigated the scripts of the first 50 hits provided by Google, and
counted how many of them contained the word implant. For word sets (i) cat
electric stimulation acoustic fibers compared, (ii) electric stimulation acoustic
fibers compared, and (iii) electric stimulation acoustic fibers we got 5, 7 and
10 hits respectively, and the other hits were also closely related.

Clearly, the combination of the four words electric stimulation acoustic
fibers has something to do with brain implants. It is hard to see how it
may happen, because acoustic fibers are cable identifiers for telecommunica-
tion engineers and technicians, electric stimulation is widely used in therapy,
wound care, erotic massagers, and analgesia, expression electric fibers are
related to piezo-electric tunable optical fibers, and acoustic stimulation may
concern fluid flow, the fetus, or trapezoid bodies. Still, the combination of
the four words is closely related to brain implants, the type of information
that might be worth to explore.

A particular part of our methodology is that we have interviewed human
participants about their search strategies. Some of the trick they applied
can be put into algorithmic form and could be used in the robotic searches.
This could greatly improve the efficiency of the machine.

This idea can be taken one step further: the machine could monitor hu-
man activity patterns and could mimic and combine those. The machine
could also serve the human user by forecasting the next step, e.g., alike in
language prediction techniques, e.g., by the compression scheme called ‘Pre-
diction by Partial Matching with Information Inheritance’ [Shkarin, 2002].
This coder works as follows: Suppose we have processed the first n − 1
actions x1, . . . , ...xn−1 of the action stream. Before experiencing the next
symbol xn the machine cam try to guess it, i.e. for every action a the ma-
chine estimates the probability p(a) for the event ‘xn = a’. This probability
distribution determines how the next symbol is encoded: The higher p(a),
the fewer bits are used for encoding a. If the estimation is good, which
means that p(xn) is high, then a good compression rate is achieved.
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4.1 Innovation Engine

Given our results, we can propose an invention engine that combines
human intelligence and machine speed. It should look as follows:

Component discovery: This part searches for
components, either by human intelligence or by blind methods, see,
e.g., [Póczos and Lőrincz, 2005b, Póczos and Lőrincz, 2005a] and ref-
erences therein. According to our studies, there are component search
methods that can break combinatorial explosion by non-combinatorial
efforts [Póczos and Lőrincz, 2006].

Recognition by components: This part requires a more sophisticated
scheme than we applied here. Our scheme used simple Disjunctive
Normal Forms (DNF). These forms are general, all logical expres-
sion can be translated into DNF. However, they are suboptimal for
human intelligence. Human intelligence performs better if sets are
grouped and the groups correspond to contexts. This description
provides an improved compression: less information is needed within
each context. Such graphical representations should be developed and
adopted. A good candidate is our bottom-up clustering algorithm
[Lőrincz et al., 2004a].

Sample based decisions: Both human and machine intelligence may ap-
ply example based classification schemes, the complementer of com-
ponent based recognition schemes.

Imitation or mimicking: The computer may learn and may predict hu-
man action series. Such macros could be applied by the computer in
parallel, or in combinations. The utilization of such macros is typically
implicit and can be made explicit by measuring partial probabilities
and by using, e.g., the PPM algorithm.

Components of the maps: Some components of the maps might be very
efficient and such knowledge may initiate new questions, novel answers
and a better human understanding.

Dialogue system: For convenience, the computer should apply an adap-
tive conversation system to ease the task for the human user

For more details about the experiments and the experiences, see Part II.
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Chapter 5

Conclusions

In summary, great care was needed to design the experiments properly.
We found that experiments may need special permissions, because they are
able to uncover and quantify emotional characteristics and cognitive capa-
bilities of the users.

Our methodology that can be seen as a learning algorithm that aims to
pass the Turing test, had considerable success. There are several advantages,
such as

• the human friendly identification of decision surfaces in terms of asso-
ciative maps,

• component formation that enables pattern completion and inferences,

• the symbiosis of crawling and document classification,

• the fresh information provided by the Internet, and

• the potentials of imitation, i.e, the identification of human action series
that could be applied by the computer.

There are important tools that could be added. For example, the
bottom-up clustering algorithm is to be included for hierarchical graph con-
struction. Other state-of-the-art procedures cost money. Examples include
a better interface to Google, an interface to AltaVista NEAR service, which
is excellent for finding the most novel synonyms, collecting topic dependent
synonym sets, and alike.

The intriguing question for the future is if this architecture could be
extended to a datamining invention engine. Such extension seems possible
for us.
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Part II

Results of the last term
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5.1 Introduction

Based on the experiences of the test runs performed last term, the con-
cepts and the software tools for examining the interaction between computer
and human using keyphrase maps were redesigned.

Last term, preliminary tests were devised and run on a local database
downloaded from Wikipedia, a free encyclopedia, to test our concept of an
intelligent search engine that combines keyword search engines and person-
alizable internet crawlers. The role of the keyword search engine was played
by Google Desktop, the desktop version of the Google search engine. The
search topics were described by a few pages in the database, and the goal
was to find certain documents.

Most importantly, tests were now performed on the whole web not on a
local database. This enabled us to search in virtually any kind of topics, and
made the task more like a real-word problem. Also, the system now supports
PDF documents, which contain a great part of the relevant information
on today’s web. The search topics were also more precisely described by
utilizing a document classifier, and the search results were more accurately
evaluated by letting the pre-trained classifier decide whether a document is
a good one or not.

The goals of the runs were to make the user train good crawlers for a
given topic, by developing good keyphrase maps and start URLs for that
topic. Crawlers are thought to be good, if they return possibly most of the
relevant information, and do not return irrelevant documents. We were also
interested in how the keyphrase maps can be used to characterize a certain
topic in a human (and also computer) understandable manner, how a topic
identified by an document classifier can be covered by keyphrase maps.

5.2 Redesigned software components

5.2.1 Essentials for searching on the web

We have realized that most people who are accustomed to using the In-
ternet for searching documents already have well developed searching habits.
The usage of a web browser to look up pages and follow links is essential.
Also they are used to view the contents of a document in a structured man-
ner, which is easy to read and quickly examine, like an HTML page. Having
this in mind, we have integrated a light-weight browser into the GUI, what
is more, this has become the central element. The browser can visualize
HTML pages more or less like any other browser, it is possible to follow
links, go back to the previous page, or to the next page.

Another tool that people are used to, is keyword search engines. Since we
started experimenting with Google, we kept using it in these experiments as
well. Google provides a web service to let automated agents perform Google
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queries. The usage of the Google API requires a license key that can be
obtained free of charge, and lets the owner make 1000 queries per day, in
order not to flood the server with request. The response of the query is in
XML format and contains all the information that one would see when using
Google manually. This can be presented to the user in various ways. One
response can contain up to 10 results, and the next 10 results can also be
requested. The search results (URLs) are presented in a list, and the links
can immediately be viewed by selecting them from the list. The details
about a result returned by Google can also be observed.

5.2.2 Crawler system

The crawler searching facilities have also been updated, both the crawler
engine, and the client interface to it. The crawler engine has been redesigned
to become modular and more robust. New features have been added, like
suspending and modifying a crawler. Crawlers can be created by sending
XML messages to the server describing the crawler. The description of
possible XML messages (an XML schema) is generated automatically by
the server from the source code. Using this description, the crawlers can
also be modified ‘on-the-fly’. Which components can be modified, are also
generated from source code.

The two main parameters for the crawlers to operate is a keyphrase map
(search criterion), and a starting URL. The keyphrase map can be provided
via a graphical interface that enables the editing of word graphs. This
search criterion can also be modified during the search. During the crawl,
the crawlers employ the Weblog algorithm described in an earlier report,
which enables them to collect new good starting URLs, by utilizing the
reinforcement they receive for returned documents. The Weblog algorithm
restarts the crawlers from potentially good starting URLs after a while.
A URL is said to be a good starting point, if the discounted cumulative
reward collected during a crawl starting from that URL is high. These
collected good starting URLs are also returned to the user, who can use this
information to start new crawlers.

Crawlers are now enabled to search the web, they operate in compliance
with robot standards. Timing constraints are also enforced in order not to
flood target servers during the search.

Although the crawler system is implemented in a client-server architec-
ture, presently a local version is used for easier testing. That is, the crawlers
of a user run on the same computer, on which he is running the client inter-
face. But the two can be separated, and can also operate in a peer-to-peer
fashion using JXTA technology – that we have developed and have tested,
but have not tried together with our crawler system yet.
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5.2.3 Support for PDF documents

Another important feature we found essential to integrate is the support
for parsing PDF documents. Since a huge part of the detailed information
that people might be looking for is contained in PDF documents on the
web, this feature enables us to perform tests in a ‘larger database’, using
the web more efficiently. Also, the contents of PDF documents are better
than that of HTML pages, since PDF documents (like scientific articles)
have a better defined topic, while HTML pages may cover more topics in
a broader domain. This becomes important when our keyphrase extraction
algorithm is applied, since well defined topics are easier to characterize by
a few keyphrases.

PDF parsing was made available by utilizing PDFBox1, a free, open-
source PDF library for Java. Support for viewing PDF documents correctly
as in commercial viewers was unfortunately not available, instead the text
content of the document was extracted, and was visualized as HTML.

5.2.4 Search topic identification

In order to perform large scale tests with the search engine, there is
a need for deciding which documents to accept in an automated manner.
For this, we trained a Support Vector Machine (SVM) classifier operating
on TF × IDF (Term Frequency × Inverse Document Frequency) document
representations. For each topic used in the tests, a new classifier was trained
on about 60 positive and 600 negative samples of scientific articles in PDF
format. Each document was transformed into a TF × IDF representation,
reviewed in [Turney, 2002], and an SVM classifier was trained utilizing Lib-
SVM2, an open source SVM library also available in Java. After this, the
classifier was able to predict whether an unseen document is in the topic
represented by the positive examples. The classifier was cross validated,
and found to have a performance above 95%. This was used to feed back
the users whether they have found good documents or not. Partially, the
goal of the search was to find many documents in the topic characterized
this way.

Users were not only informed about whether the documents found are
good or bad, but they were also supplied a score for each document, saying
how good that document is. This score was calculated by matching the found
documents’ keyphrase maps to the maps of the positive samples. The maxi-
mum of the individual score values to the positive samples were returned to
the user. This is also a way to cross-check the keyphrase map based topic
identification with the document classification: high score documents should
be classified good, while low score documents should be classified out of the

1http://www.pdfbox.org
2http://www.csie.ntu.edu.tw/∼cjlin/libsvm/
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topic. This was true in most of the cases, although some outliers were also
present, due to the subjective manual selection of the positive samples.

Also, some components in the crawler system need reinforcement from
the user to let the reinforcement learning algorithms operate. Unfortunately,
human users found it a little uncomfortable to send reinforcement for the
crawlers for each document. Thus, we automated the process and utilized
the classifier to do it instead of the user: documents classified to be in
the topic implied positive reinforcement, while documents outside the topic
meant negative reinforcement.

5.3 Initial experiments and experiences

To test the effectiveness of our system, especially whether the keyphrase
map concept helps the users in the search, we devised search tasks in scien-
tific topics selected by the test supervisor. The two topics in the first runs
were ‘Facial expressions’ and ‘Dyslexia’. The testers were given 5 sample
documents in the domain, and were asked to search for similar documents on
the web. The testers were members of our group, eight people alltogether.

As described in the previous section, a document classifier was trained on
positive and negative samples to be able to classify new documents, whether
they belong to the target topic or not. Such way the testers were informed
whether they have found a good or a bad document. Along with this in-
formation, they were returned a score for each document, indicating how
good that document might be. This was based on matching the documents’
keyphrase map to that of the sample documents’ keyphrase maps, and the
maximal match was returned. As natural, the task was to find as much good
documents as possible, in a given time interval (typically a few days, taking
care of the crawlers for a up to around one hour each day, and letting them
run for longer time).

To test whether the keyphrase map concept and the map based document
similarity helps users in the search, we divided the testers into two groups:
a test group, and a control group. In the test group everything was normal
as described above, however, in the control group, the document scores were
altered in a way that they conveyed less information about the true value
of the document. Since document scores were real values between 0 and 1,
0 indicating a document not in the topic and 1 indicating a perfect match
to one of the samples, transforming the scores (with a monotone, nonlinear
transformation) so that most of them fell very close to 0.5 seemed to be a
reasonable way to make the scores convey minimal information about the
documents’ content. Of course, the testers did not know about the existance
of this transformation, not even about the existence of the two groups. This
way we hoped to be able to test them without their knowledge about the
tests altering their behavior.

23



Unfortunately, we were unable to show significant differences in the per-
formances of the two groups, mainly because of three reasons:

• The variation in the strategies and usage preferences of the individuals
was so large, that the results were hardly comparable. Some testers
used many Google searches, and observed the documents found and
sharpened the set of keywords used in the queries, while others started
many crawlers after an initial tuning of a keyphrase map (or maps)
and let them crawl for a longer period. Some used few crawlers for
long runs, some used many crawlers for short runs.

• The testers turned out to be more adaptable than we expected. The
ones in the control group with the altered scores realized that the
scores had been altered and score distribution has changed (this was
because they had previously used the system without the scores being
altered) and that there are very little differences between the scores
(all of them being close to 0.5). They realized that this ‘new’ scoring
system is not so helpful, and the other was easier to use, but they were
able to adopt it, and use it like the normal one after a while.

• We have realized, that it is very hard if not impossible to test whether
the keyphrase map concept helps people in such a way that they do
not know that they are being tested, and a control group also exists.
For a true test, it would not be enough to alter the keyphrase map
based document scores, but the whole keyphrase map service should be
tuned off. But that would mean a complete change in the search tests,
and the results would be incomparable. For instance, if keyphrase
extraction from documents would not be enabled, people would have
to read through possibly a large number of documents, and find the
right keywords for themselves.

Testers also realized in this period, that one defect of Google searches
can easily be fixed: if one enters a keyword into Google, it will return a huge
number of documents containing that keyword, and very few of them will fall
into the topic that the user desires. However, if one enters a combination
of topic related keywords (like 4-5 words, simply and -ed together), then
most of the results of the query will be relevant in the topic. Thus, users
have developed the following strategy: first, they find good topic related
keywords one-by-one, then, they find out how they should be combined, and
then they enter many of these combinations to Google, which now returns
many relevant documents.

Users have also realized, that the ranking of the documents could still
be made better, since Google ranks, documents based on page rank, instead
of score. Thus it may happen that many good documents are positioned in
the third/fourth/fifth ten of Google responses.
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Others, who preferred to use crawlers for the search, also realized that it
is easier to cover a topic by many smaller keyphrase maps, than with a large
one. This comes from the usage of a broader topic as target. For instance,
the topic ‘Dyslexia’ has many aspects. Each aspect must be covered by a
smaller map. Then, if we accept any document about dyslexia, we accept a
document about any of those aspects. Of course, when in a real word search
problem, a user would decide which aspects (s)he is interested in (but only
after realizing which aspects exist about a topic). Then (s)he would focus
on those aspects of interest, this way narrowing the search.

5.4 Modified experiments

Building on the experiences drawn from the previous experiments, the
usage of the keyphrase map concept had been rephrased in the next exper-
iments. Since people used many crawlers with smaller maps instead of one
larger map, we redesigned the matching of maps in the following way: a
word map may contain disconnected components. These components are
interpreted as sub-maps of a large map, and the whole is like a disjunction
of the parts. On the other hand, the words in a component are treated as
and -ed together. The maps extracted from documents usually contain one
connected component, if not, the words not connected to the main com-
ponent are usually junk words, and are due to the imperfectness of the
keyphrase extraction algorithm. Thus, the matching of the user map to the
document maps goes the following way: the components (sub-maps) of the
user map are matched one-by-one to the document’s map, and the highest
match score is returned. This way the user can enumerate the various as-
pects of a broader topic in one large map by separating it into disconnected
components, and the matching accepts any of those aspects.

The idea behind this, is that users must train the crawlers to match two
criterions:

• the crawler should find and return possibly all relevant information
about a topic; this can be done by covering all the necessary aspects of
the topic, by adding all the necessary sub-components to the keyphrase
map. Also, to match this criterion better, the user has to find many
good starting URLs (at least one for all aspects), for which he can use
the Weblog algorithm mentioned earlier.

• the crawler should not return irrelevant documents; this should be
done by adjusting each component, which describe a single aspect, by
adding the relevant keywords, and by further fine tuning the map by
adding edges between the words. However, we must note the follow-
ing. We believe that the way the words in a component are connected
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are only used for fine tuning when edges serve the purpose of disam-
biguating the meaning. In most cases, a set of words clearly describe
a meaning. When this is not the case, for instance when three words
can be contained in a sentence having two different meanings, the
edges are also necessary to clarify the search criterion. Nevertheless,
in this graph interpretation, the edges have an important role in the
separation of components (aspects).

Note, that the present form of graph interpretation is similar to using
boolean formulas to specify the search criterion (to be precise, this is equiv-
alent to using formulas in disjunctive normal form), but this is done via a
graphical interface, which is probably more easy to see through for a human
than large boolean formulas.

Any kind of boolean formulas can also be used in keyword search engines
like Google, however, it must be noted that the whole procedure differs
from Google’s search power in performance, since our formula matching only
applies to the extracted keyphrases of the documents, while Google applies
it to any word in the document.

We also modified the goal of the test runs, to give a different formulation
for the testing of whether the usage of keyphrase maps is useful. Instead of
having a test group and a control group with altered documents scores, the
task was not to find as many documents as possible, but to train as good
crawlers as possible.

The performance of the crawlers was measured by three measures derived
from true/false positive and true/false negative documents. A document is
positive if the crawler judges it to be a relevant document (based on its
search criterion keyphrase map’s similarity to the document’s map). Thus a
true positive document is one that was judged by the crawler to be a good
document and is also judged as good by the classifier. A false positive is one
judged to be relevant by the crawler, but not by the classifier. Similarly, a
true negative is one judged to be irrelevant both by the crawler and the clas-
sifier, and a false negative is one thought to be irrelevant by the crawler, but
relevant by the classifier. Using these concepts, the performance measures
are as follows:

• Accuracy = # true positives
# all positives . This measures the fraction of truly good

documents found by the crawler, thus optimizing this measure would
yield the crawler not to return irrelevant documents

• Recall = # true positives
# true positives + # false negatives . This measures the fraction

of documents judged as good by the classifier returned by the crawler.
Optimizing this would yield the crawler return all relevant information
from an area

• Crawling hit ratio = # truly relevant documents found
# all documents processed . This measures

how fruitful area the crawler is crawling. Optimizing this measure
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would guide the crawler towards areas where many relevant documents
can be found

Having these performance measures available for the user, the goal was
to train crawlers with high performance measures. By examining how well
the first two performance measures can be optimized, we expect to get an
answer for how well the topic characterized by a document classifier can be
approximated by a tool that is both understandable for humans and for the
computer (since the usage of the SVM classifier as an interface between hu-
man and computer would be inappropriate, because of the SVM parameters
being not meaningful for the human).

The two topics in these experiments were ‘Natural language processing’
and ‘Cortical prosthetics’. Again, the testers were given 5 sample documents
in the topic domain to start with.

5.5 Search strategies and experiences

After the experimental runs, the testers were interviewed about how they
used the system, what strategies they devised, and what they found positive
or negative.

Of course, the users started the search by extracting keyphrases from the
sample documents. Then, these extracted keyphrase maps were ‘cleaned’,
by means of deleting words that were thought to be not so much related to
the topic in general. An initial user keyphrase map was created by putting
together the previously created cleaned components into a unified map.

Also, to start crawlers, start URLs were also needed, since the sample
documents were PDF documents, which could not be used as a starting
point for the crawl. Thus, various combinations of the previously extracted
keywords were entered to a Google query, to find potentially good starting
URLs. The URLs marked by the SVM classifier to be a good document were
usually used to start a crawl from, but occasionally non-accepted URLs with
a high score were also experimented with.

Another simple strategy, introducing some human knowledge about the
web proved to be fruitful: Usually, good PDF documents found by Google
had a higher score, than good HTML pages, since their content is more well
defined, they fit into the search topic more, especially when the search task
is about a scientific domain. These documents were often contained in a
list of other documents linked from an HTML page, such as a publication
list of a research group, and usually, most documents in that list were quite
similar, thus if one of them is a relevant one, than probably so are others.
Thus, people started crawls from the home pages of the authors or the
research group or institute. Often, they searched for the sample documents
with Google, and started crawlers from URLs near that document, that they
found promising.
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When the crawlers found relevant documents, the keyphrases from them
were also extracted, and the users’ maps were updated taking those new
phrases into account. One point in the task was to cover the topic suffi-
ciently, that is to build such a map, that reflects all aspects of the search
topic (to make the crawler find all relevant information). To reach this, the
following was applied: when a crawler found a document that had a low
estimated relevance based on the user’s map, but the document classifier
judged the document as a relevant, the keyphrases of that document were
also added as a new component to the user’s map, this way sharpening the
search. In order to satisfy the other performance criterion, namely to make
the crawler return only relevant documents were in most cases controlled
by the minimum relevance threshold parameter of the crawler. Some users
found a threshold that worked pretty well in most cases (around 0.6). Also,
in some users’ strategies, when a crawler found an irrelevant document,
the keyphrases extracted from those documents were erased from the users’
keyphrase map, to avoid the crawler returning such more documents. With
the modified maps then, new crawlers were started, maybe from the same
start URL as their ancestors, in order to sweep it again with the new search
criterion in mind.

A general experience was that the crawlers performed well only at the
beginning of the crawl, around the start URL. After that, they were likely
to get away from good areas, where their performance slowly fell. In many
cases, the structure of the sites were found to be tree-like, rarely were links
pointing out to some other good region (like to the page of another researcher
working on the same topic). This made the users force the crawlers stay
within a site, in order not to let their performance fall. But this resulted
in the crawler sweeping the same region again and again, and not finding
any more new relevant documents. Only few crawlers were able to find new
good regions through links to other internet domains.

We also checked whether the users found the documents we used to train
the classifier, or whether they found completely new ones. The first topic
(Language) was trained on documents from all over the web, from many
authors. The users found some of these documents (around one fifth), and
found many new ones (about 400). The second topic (Prosthetics) was
trained on documents downloaded from two sites, having about 50 docu-
ments from one site, and 15 from the other. Some users have found the
site that contained the 50 documents, and had crawlers that returned half
of those documents. Also a few hundred new documents were found in this
topic, but less then in the first one, this has proven to be a more difficult
topic.

To see how well the users were able to identify the topic described by
the SVM, we tested some maps that they have constructed. We launched
crawlers with those maps to sweep the page where the most training docu-
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ments were downloaded from for the second topic3. We tested four maps,
all of them reaching a recall of 90-95% and an accuracy of 53-58%. We also
verified the SVM on these documents, it had a performance of around 96%.
This means that the maps were able to identify the topic quite accurately,
the crawlers had returned almost all relevant information, and only less than
the half of the returned documents were not from the topic that the SVM
was trained for. It must be noted, that the other documents on that page
were also from a similar domain, that is the task was quite hard.

There are some sites ideal for these crawling tasks: were (PDF) docu-
ments are virtually interlinked by HTML references, like CiteSeer, or arXiv,
Rexa, etc. The advantage of these sites is that the related documents are
strongly interconnected, virtually, clusters of documents related to a topic
are formed. These connections could be easily exploited by the crawlers.
However, most of these sites do not let robots make requests, thus the users
were unable to utilize these sources.

One user also found it unnecessary and overcomplicated to use crawlers
for internet searches. He admitted that he heavily relied on the keyphrase
map extraction and map interaction properties of the system, but said that
once the right keywords are known, Google-like search engines can also do
the job for us. Even, when the keywords are not so well developed in the
beginning of the search, resorting the results of Google based on keyphrase
map similarity helps a lot. This is a valuable technique – provided that infor-
mation is not changing quickly, and if the search task concerns the web – be-
cause the keyword map that identifies the decision surface can be constructed
quickly. Nonetheless, there is a huge amount of context like information in
the details of the crawl [Lőrincz et al., 2002, Kókai and Lőrincz, 2002] that
can not be extracted by the method relying on Google alone.

We found that the ‘news forager’-like crawling technique that we have
used must be somewhat adopted when using it for topic specific, user con-
trolled searching. First, it seems so, that the internet domains containing
documents in similar topic are not well connected enough. Connections be-
tween topological internet domains is much dense, which makes the crawlers
get lost easily. Second, when using crawlers that adopt to the search cri-
terion, the crawlers need some time to tune their parameters, thus in the
beginning of this learning period, they do not perform well. However, when
a user starts a crawl having a narrow topic as a search criterion, the crawler
has no time to get well trained, if short crawls are used, as it seems users
would prefer. Starting many crawlers for various search tasks and waiting
for the results for a few hours or even half a day did not seem to be a popular
practise.

A possible solution could utilize crawlers that perform quick shallow (or
adaptive) searches around areas which it finds to be promising (for example

3http://www.ninds.nih.gov/funding/research/npp/resources/archived contracts.htm
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a main page of a site), and would make longer hops across sites to look
for new areas. Another possibility is to introduce communication between
crawlers and to lessen the need for adaptivity but sharpen the evaluation of
the context of a given neighborhood on the Internet. This latter has been
studied [Lázár et al., 2006] and good results can be expected in the future.

Plots of example runs from the experiments that display the perfor-
mances of the crawlers and some user keyphrase maps are listed in the
Appendix.
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Chapter 6

Appendix A: Software Users’
Guide

6.1 Running the software

Running the software requires Java 1.5. The necessary jar files must
be supplied with the -classpath parameter. The main class of the program
is nipg.crawlerengine.crawlerclient.RunCrawlerClient. The command line
arguments of the program are the following:

• local/jxta: whether to run the crawler server locally or remotely
using JXTA technology. This must be the first parameter.

• -shost “submission host name”: host name of the computer that
runs the document submission server. Default value: localhost

• -sport “submission port”: server side port number used to connect
the document submission server. Default value: 9090

• -scport “submission client port”: client side port number used to
connect the document submission server. By default, a new port not
yet in use is chosen automatically

• -stimeout “submission timeout”: timeout interval for document
submission, in milliseconds. Default value: 10000

• -lhost “login host name”: host name of the computer that runs
the login server. Default value: localhost

• -lport “login port”: port number used to connect the login server.
Default value: 9091

• -lcport “login client port”: client side port number used to con-
nect the login server. By default, a new port not yet in use is chosen
automatically

31



• -ltimeout “login timeout”: timeout interval for login, in millisec-
onds. Default value: 3000

• -googlekey “google key”: Google APIs registration key (needed
for making Google queries through Google APIs). The default
value is a presently registered, valid Google key, which may ex-
pire in the future. A new Google key can be obtained from
http://www.google.com/apis/ by creating a new account free of
charge. It must be noted, that one key enables to issue 1000 queries per
day, independently of which program issues them. For more queries,
separate keys must be used.

• -rdelay “refresh delay”: the time interval for automatically refresh-
ing the crawler output, in milliseconds (refreshing requires sending a
query to the crawler server when not run locally). Default value: 3000
if the server is local, 30000 otherwise

• -nologin: do not use login. By default, users must log in before they
can use the software. This is only for basic user identification

For example, to run the program int local mode, with the submission
and login servers running on nipglab06.inf.elte.hu, type the following:
java -classpath
dist\*.jar nipg.crawlerengine.crawlerclient.RunCrawlerClient lo-
cal -shost nipglab06.inf.elte.hu -lhost nipglab06.inf.elte.hu

6.2 Using the software

6.2.1 Login

After starting the software, the program loads the necessary data files,
and the main GUI window is shown, with the login window popping up (if
-nologin is not specified). Here, the user has to supply his login name and
password (6.1). One can register a new username, where he has to supply
his full name, a new user name, and a password (6.2).

After logging in, the main window can be seen. The window is split into
three regions. The size of the regions can be varied by grabbing and moving
the splitter lines with the mouse.
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Figure 6.1: Logging in to the system
The user must supply his user name and password

Figure 6.2: Register a new login name
The user must supply his full name, a user name that is not already in use,
and a password
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6.2.2 Browser area

The right panel is the browsing window, used to display pages and doc-
uments reached during the usage of the system. This also functions as an
internet browser. One may enter an internet address into the text field on
the top, and the page is loaded to the window after pressing enter. Alter-
natively, a previously entered address can be reloaded by selecting it from
the drop-down list. The previous (<) and next (>) buttons can be used for
traversing the browsing history. The button in the top right corner with
the caption ‘. . . ’ can be used for loading a local file to the browser panel
(6.3). One may also follow the links in HTML pages. If one opens a pdf file,
the text contents of the file is extracted and converted to HTML, and then
displayed (6.4).

Figure 6.3: Browser window
The basic browsing functions like loading a page and following the links can
be performed here
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Figure 6.4: Displaying a pdf file
A text content of a pdf file is converted to HTML
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6.2.3 Document lists

On the left side of the main split pane are two lists, that may contain
document URLs. When one selects a document from the lists, the document
is displayed in the browser area.

The top list contains results found by the system; either by the crawlers
or by Google. The list always contains the documents of the actually selected
crawler, or the last Google query. The bottom list contains the documents
stored by the user for later use. If a document is stored, it is saved to the
hard drive, and is loaded when the program is launched again.

The document lists have popup menus which can be activated by right
clicking on the list. Most menu commands apply to the selected documents
in the list. For example, one may store some documents by selecting them
in the top list, and clicking ‘Store documents’ in the popup menu (6.5). The
lists enable multiple selection. However, only one list may have selected
entries at a time, namely the active one. When one of the two lists is
activated (by performing some mouse action in them, like selecting an item),
the other one is deactivated and selection is lost. The lists can also be sorted
by various criteria, this can also be reached from the popup menu. The
document related tasks can also be performed using the ‘Documents’ menu
on the top of the GUI window. Like in the popup menus, tasks apply to
selected documents in the active list.

Figure 6.5: List popup menus
The popup menus on the document lists enable several document related
functions like storing a document for later use
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When the mouse cursor is moved over an entry in either of the lists,
the system displays additional information about the documents. Common
information are the document index, document scores, and whether the
document is a hit. The index is simply used to sort documents by arrival.
The ‘score’, which is a real value between 0 and 1 tells the user how good the
document is. The ‘hit’ flag indicates whether the document is accepted as
a relevant one in the actual search topic. In addition, accepted documents
are colored green in the list, while not accepted documents are colored red.
Documents for which the evaluation is not yet available are colored black.
The ‘reference score’ is also a goodness value, which is computed against
a reference map, which can be set by the user, and serves as a helper in
the search. For additional document information depending on how the
document was found, see the forthcoming sections (6.2.5, 6.2.6).

The list of stored documents can also be saved to a file and loaded later,
using either the popup menu, or the ‘File’ menu on the top of the main
window. When a document is deleted from the list of stored documents, it
is only deleted from the list, but not from the hard drive. It may still be
contained in a previously saved list, or can be reloaded with the ‘Load all
stored URLs’ menu item. Only when a document is erased with the ‘Erase’
menu item, then is it deleted from the hard drive.
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6.2.4 Keyphrase maps

When a document is loaded, keyphrases can be extracted from it, by
right clicking the document pane, and selecting ‘Extract keyphrases’ from
the popup menu. The keyphrase map is displayed in a separate window
(6.6). This window can be used for modifying the keyphrase map, as well as
for saving it. At other points of the program, the saved maps can be loaded
for various usage.

The keyphrase map can be edited by right clicking the map area, which
brings up a popup menu. Right clicking on a blank area enables adding
a new node, while right clicking an existing node enables modification. A
new node may also be added by double (left) clicking the blank area. The
popup menu enables adding, modifying, and deleting nodes, starting a new
map, saving and loading maps, unifying maps by adding saved maps to
the one being edited, extracting keyphrases from text files, and extending
the map with synonyms of the selected node (6.7). Nodes may be selected
and moved by selecting a region on the map with the mouse and dragging
them. When adding a new node, a string and a weight must be supplied
(6.8). The nodes are colored according to their weight. Zero weighted nodes
have a white background, while nodes with a weight of one have an orange
background, and the values in between are interpolated linearly. Two nodes
can be connected with an edge, by right clicking in the middle of a node and
dragging the cursor to the middle of an other node while holding down the
right mouse button, where it can be released (6.9).

Keyphrase map editing can also be performed by opening a map editor
window from the ‘Maps | Map editor...’ menu item found on the top of the
main window. The ‘Maps | Edit reference map...’ menu item lets the user set
a reference map, which can be used to make the system compute reference
document scores, which are similarity values computed by comparing the
document maps to this reference map.

Extending the map with synonyms requires a synonym database, and
the performance heavily depends on it. By default, a general database is
being used, extracted from the British National Corpus. Unfortunately this
performs poorly on narrow scientific domains.
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Figure 6.6: Extracting keyphrases
The keyphrase map is displayed as a word graph, which can be modified
and saved for later usage

Figure 6.7: Editing a keyphrase map: popup menu
The popup menu offers several functions, like creating a new map, editing,
saving, loading and extending maps with synonyms
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Figure 6.8: Editing a keyphrase map: adding a new node
To add a new node, a string and a weight must be supplied

Figure 6.9: Editing a keyphrase map: adding a new edge
Edges between nodes can be inserted by dragging the mouse from the middle
of one node to the middle of the other, while holding the right button down

40



6.2.5 Integrated Google interface

The user may perform keyword searches via the integrated Google inter-
face, which is located on the right side of the toolbar, in the top right corner
of the main window. In the text field, queries can be entered as one would
usually do on the Google page. The query is performed either by pressing
enter, or clicking the ‘Go’ button. Then, the first 10 results are returned
and listed in the top list on the left. If the user clicks the ‘Next’ button, the
next 10 results are also listed, and so on (6.10).

When the mouse cursor is moved over a document URL in the list,
additional Google specific information is also displayed about the document:
the title of the page, and the snippet extracted by Google which indicates
in what context the keywords were found. These are the same information
one would see when using Google from a browser. When an item is selected
in the list, the page is loaded and displayed in the browser area (6.10).

When crawler related documents are displayed in the top left list, the
results of the last Google query can be redisplayed in the list by clicking on
the ‘Google’ label in the top right corner in front of the Google query text
field.

Figure 6.10: Google query results
The query results are displayed in the top left list. Additional information
about the found documents can also be displayed
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6.2.6 Crawlers

The left side of the toolbar on the top of the main window is devoted for
crawler related operations. New crawlers can be created, existing crawlers
can be modified, saved, deleted, loaded, suspended and resumed.

When creating new crawlers, the following parameters can be set:

• unique name: it is used for identifying the crawler in the system;
must not be empty

• start URL: it defines where the crawl will begin from; must not be
empty

• site URL: this tells the boundaries of the crawler, which it can-
not leave. More precisely, it specifies which URLs are enabled
for download. This works in a template matching fashion. The
site URL does not need to be an existing URL, instead, the parts
of the URL specified as site URL must be contained in the doc-
ument URL to be enabled for download; that is the site URL’s
protocol must equal the document’s protocol, the site URL’s host
name be must contained in the document’s host name, the site
URL’s file path must be contained in the document’s file path.
For example, if the site URL is http://cnn/2006/, then the doc-
ument’s host must contain ‘cnn’ and the file path must contain
‘2006’. Thus, http://www.cnn.com/2006/news.html is accepted,
http://cnn.money.com/sports/2006/news.html is also accepted,
but http://www.google.com/cnn/2006/news.html is not accepted,
since the document’s host does not contain ‘cnn’.

• keyphrase map: this specifies the search query. This map is matched
by the crawler against the keyphrase maps extracted from the docu-
ments, and the ones with a match value exceeding a certain threshold
will be returned to the user.

• min relevance: the above mentioned threshold, above which the
documents are returned to the user; should be a real value between 0
and 1

• path length: the number of steps the crawler should make before it
is restarted from a newly selected URL; should be greater than 1

• URLs to visit repeatedly: the crawler proceeds the following way:
starting from a URL, it makes path length number of steps, and then
it selects a random URL from the list of URLs to visit repeatedly, and
restarts crawling from that point. Initially, such URLs can be supplied
manually. As the crawler proceeds, it collects potentially good starting
URLs, which it stores into a list, along with a value. This list can be

42



queried by the user, when it modifies a crawler. When starting a new
crawler, the list of an existing crawler can be imported to the crawler
going to be created. Editing the list can be done by right clicking it,
and selecting the options in the popup menu.

• expect feedback: whether to expect manual feedback from the user
for the documents found. When checked, the user may (should) send
feedback (good/bad) to the crawler for each document using the doc-
ument list popup menu. When not checked, feedback is sent automat-
ically to the crawler, based on the ‘hit’ flag of the documents

While any of the parameters have a wrong value, the create button
cannot be pressed. Wrong parameter strings are indicated by red printing
color.

Figure 6.11: Creating a crawler
To create a crawler, a name, a start URL, a site URL and a keyphrase map
specifying the search query must be supplied

After the crawler is created, it is inserted into the list of currently running
crawlers. The crawler, whose output is currently displayed can be selected
from the drop down list in the middle of the crawler toolbar. The output
of the selected crawler can be refreshed by clicking the ‘Refresh’ button
next to the crawler selection drop down list. Refresh is also performed
automatically, the refresh interval can be set by the -rdelay parameter of
the program. The selected crawler can be saved, and a previously saved
crawler can be loaded. The crawler can be suspended, which means that
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it pauses running until it is resumed. However, it may also happen that a
crawler is automatically suspended by the system, when it has found more
than 100 documents that have not yet been seen (and stored or deleted)
by the user. A crawler can also be replicated, which means starting a new
crawler with parameters similar to the selected one (the crawler creation
window is popped up, filled with the parameters of the selected crawler,
and the parameters can be modified). Crawler related actions can also be
performed using the ‘Crawler’ menu on the top of the main window.

The documents found by a crawler are displayed in the top left list.
Additional information about the documents is the estimated ‘relevance’,
which is a similarity value of the document’s keyphrase map compared to
the maps of the sample documents specifying the actual search topic. When
a document is selected from the list, it is displayed in the browser area.

The status of the crawler is displayed in the bottom of the window, in
the status bar. The ‘Active’ check box indicates whether the crawler has
stopped running (which can only happen if it does not find any links to
follow, and it does not have any URLs to restart from). The ‘Suspended’
check box indicates whether the crawler is suspended or not. The other fields
display the performance scores of the crawler. ‘Accuracy’ tells the ratio of
relevant to irrelevant documents returned by the crawler to the user; that
is how well the crawler can filter out unwanted documents. ‘Recall’ tells
the ratio of returned relevant documents to all relevant documents (i.e. also
those relevant documents that were passed by by the crawler, but not re-
turned to the user); that is how well the crawler is able to recognize relevant
information. ‘Crawling hit ratio’ means the ratio of relevant documents to
all documents passed by the crawler; that is how good a region the crawler
is sweeping. By right clicking on these labels, it can be set whether the
recent statistics (facts calculated from the last 100 documents passed by by
the crawler) or the overall statistics should be displayed.
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Figure 6.12: Documents found by a crawler
The documents found by a crawler are displayed in the top left list. Addi-
tional information about the found documents can also be displayed
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Chapter 7

Appendix B: Test examples

The following figures are examples from the tests that we have performed.
The first group of figures ((7.1, 7.2, 7.3)) show example crawler runs, the
changing of the Accuracy (blue) and Recall (red) performance measures.
When Accuracy is not changing, it indicates that the crawlers had found true
or false negative documents; when recall is not changing, it indicates that it
had found false positive or true negative documents. When both accuracy
and recall are constant, it indicates that the crawler had encountered true
negative documents. Also, another interesting value is displayed (black), the
ratio of new documents to all documents, which shows when the crawlers
encountered areas with new information (i.e when the black line goes high
up), and when they have swept already seen areas again (i.e. when the black
line goes horizontally).

Some of these plots display runs that had very good recall but poor
accuracy, some that were poor at the beginning but became better at the
end, some that kept very good because the crawler was forced to stay in a
good region, some where the performances dropped at the end because the
crawler went to a poor region further from the start URL, and many runs
where the performance stayed around 50% for long which is quite a good
performance from a search system (it finds 50% of the relevant documents,
and 50% of the returned documents are truly relevant).

We have also plotted these figures with the true negative documents not
included, since they are irrelevant for the performance measures (7.4, 7.5,
7.6).

The other group of figures show example maps that users had created for
the crawlers, two from both topics (7.7, 7.8, 7.9, 7.10). These were chosen
from the maps belonging to very fruitful runs.
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(a) Sample run 1 (b) Sample run 2

(c) Sample run 3 (d) Sample run 4

(e) Sample run 5 (f) Sample run 6

(g) Sample run 7 (h) Sample run 8

Figure 7.1: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner
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(a) Sample run 9 (b) Sample run 10

(c) Sample run 11 (d) Sample run 12

(e) Sample run 13 (f) Sample run 14

(g) Sample run 15 (h) Sample run 16

Figure 7.2: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner
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(a) Sample run 17 (b) Sample run 18

(c) Sample run 19 (d) Sample run 20

(e) Sample run 21 (f) Sample run 22

(g) Sample run 23 (h) Sample run 24

Figure 7.3: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner

49



(a) Sample run 1 (b) Sample run 2

(c) Sample run 3 (d) Sample run 4

(e) Sample run 5 (f) Sample run 6

(g) Sample run 7 (h) Sample run 8

Figure 7.4: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner.
The true negative documents are left out from the series
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(a) Sample run 9 (b) Sample run 10

(c) Sample run 11 (d) Sample run 12

(e) Sample run 13 (f) Sample run 14

(g) Sample run 15 (h) Sample run 16

Figure 7.5: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner.
The true negative documents are left out from the series
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(a) Sample run 17 (b) Sample run 18

(c) Sample run 19 (d) Sample run 20

(e) Sample run 21 (f) Sample run 22

(g) Sample run 23 (h) Sample run 24

Figure 7.6: Sample runs
Blue: Accuracy, red: Recall, black: the ratio of new documents to all doc-
uments. The horizontal scale displays the documents encountered by the
crawler, the total number of documents is shown in the bottom right corner.
The true negative documents are left out from the series
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Figure 7.7: Sample map 1 from topic ‘Language’
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Figure 7.8: Sample map 2 from topic ‘Language’
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Figure 7.9: Sample map 1 from topic ‘Prosthetics’
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Figure 7.10: Sample map 2 from topic ‘Prosthetics’
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